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Quantum mechanical excited energy states of two- or three-dimensional harmonic 
oscillators are highly degenerate. A general method is presented to calculate the symmetry 
adapted quantum mechanical oscillator functions with respect to the symmetry group of the 
oscillator. In the special case of the tetrahedral symmetry group the method is demonstrated 
by detailed formulas for the two- and three-dimensional case. A computer program is also 
available. The method can easily be modified for other symmetry groups. 

I. GENERAL DESCRIPTION 

1. Introduction 

Internal vibrations of molecules and phonons in crystals are typical systems which 
are described by one-, two-, and three-dimensional harmonic oscillators. Here we 
consider those sytems invariant under the symmetry transformations of the three- 
dimensional local space which belong to a certain finite symmetry group G. The 
coordinates of the vibrations, whose number is equal to the number of the degrees of 
freedom of the vibrations, can then be transformed into normal coordinates q which 
transform as the basis functions of the irreducible representations of G. Harmonic 
oscillators, whose normal coordinates transform as two- and three-dimensional 
irreducible representations of G, have quantum mechanical excited energies which are 
highly degenerate. It is therefore the purpose of this paper to present a numerical 
procedure to calculate the symmetry adapted quantum mechanical wave functions in 
the excited states. This is of considerable importance for problems involving electron- 
phonon coupling or a Jahn-Teller effect in solid state and molecular physics [ 11. We 
concentrate here on two- or three-dimensional harmonic oscillators. The method can, 
however, easily be modified for oscillators of higher dimension, whereas the one- 
dimensional case is trivial. 

We use the usual notation in the occupation number representation of quantum 
mechanics [ 2 J. V,,(q) are the one-dimensional harmonic oscillator eigenfunctions 
belonging to the nth excited energy level n = 0, 1, 2... . 

In case of a two-dimensional or E-mode we define 

I mnh = y&d y&J with m + n = N, 
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where qU, qv are normal coordinates transforming as u and u of the irreducible 
representation E of G and 0 < m, n, N are integers. The degeneracy of the excited 
state of N phonons is LE = N + 1. 

In case of a three-dimensional or T-mode we define 

Ilmn), = YY,(q,) Y&2) yl,k3) with I+ m + n = N, (2) 

where q, , q2, q3 are normal coordinates transforming as the three basis functions of 
the irreducible representation T and 0 < 1, m, rz, N are integers. The degeneracy in the 
excited state of N phonons is LL = {(N + l)(N + 2). 

The problem discussed here is to find linear combinations of )mn),V with fixed N 
which transform as the basis functions of the irreducible representations of the 
symmetry group G. The method is also applied to find the linear combinations of 
\lmn), for N fixed. 

2. Properties of the Oscillator Functions 

For simplicity we here give only those properties, which are needed to understand 
the method described below. The ground state wave functions (OO), and \OOO), are 
invariant under all transformations of the symmetry group G. The transformation 
properties of the excited state functions are conveniently described by creation and 
annihilation operators which are defined in the usual way [2] (A + denotes the 
Hermitian conjugate of A). In case of an E-mode 

At imn>,= (m + l)“‘/m+ In),v+,, 

Almn),=m”*lm- ln),v_,, 

B+ \mn),v= (n + 1)“2 Imn + ~),v+I, 

B /mn),v=n”2 lmn - l>,vm,, 

or in case of a T-mode 

At Ilmn),=(l+ l)“*(l+ lmn),V+,, 

A /lmn),=l”2 ll- lmn),-,, 

B+ Ilmn),v= (m + 1)“2 Ilm + ln),v+,, 

B Ilmn),v=m”2 Ilm - ln),V-,, 

C’ Ilmn),v= (12 + l)“211mn f l),v+,, 

C 1 lmn),v = n I” I lmn - 1 ),b,P, . 

(3) 

(4) 

The creation and annihilation operators are linear combinations of the position and 
momentum operators and therefore transform as the normal coordinates: At and A 
as qU, B+ and B as q,,, and similar in case of a T-mode. This is true because no 
transformations of time are considered here. Since all the excited state functions can 
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be constructed by multiple application of creation operators to the ground state wave 
function, the transformation properties of jmn),, , can be found from those of A ‘, 
Bi, and 1 m/n’),.,,. This enables us to find symmetry adapted wave functions in 
successive steps for N= 1, 2, 3 ,... . Note that Bt is the Hermitian conjugate operator 
of B and therefore the scalar products with these functions have, for instance, the 
properties 

(Imn 1 I’m’ + In’) = (m’ + 1)-l’* (Imnl B’ Jl’m’n’) 

m 
( 1 

I/Z 

= m’+l 
(lm - In / I’m’n’) 

and so on. 

3. Arrangement of Oscillator Functions 

In case of an E-mode the N + 1 oscillator functions belonging to the nth excited 
state are numbered 

fi = imini)N; i = 1, 2, 3 ,..., Lip = N -t 1 (6) 

with mi=N-ii 1, n,=i- 1. 
In case of T-mode the L$ oscillator functions belonging to the Nth excited state 

are numbered 

fi=Ilimini)N;i= 1,2,...,LL=f(N+ l)(N+2) (7) 

with 

i=(N-1,)(Nt3-li)i+ 1 -mi, 

li=N-I,, 

mi = $(I, + 1)(10 + 2) - i, 

n,=i-iZ,(Z,+ l)- 1, 

I, = Int(f((8i - 7)“’ - l)}, 

(8) 

where Int denotes the integral part of the argument. Equation (8) is also used to find 
the index i for given values of li, mi, and ni. 

4. General Description of the Method 
The L, oscillator functions h belonging to an excited state N > 1 form a basis of a 

L,-dimensional reducible representation of the symmetry group G. If the coordinate 
system of the three-dimensional vector space is transformed according to an element 
s E G, the coordinates of the vibrations and the normal coordiantes q change. This 
leads to a transformed oscillator function which we denote by P&. The represen- 
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tation matrices are then given by the usual scalar product of the elements of the 
Hilbert space A and Psfj 

M, = (P;) with P; = (fj, P, fj), i, j = 1, 2 ,..., L,. (9) 

The matrices M, for N + 1 can be found from those of the representation matrices of 
the Nth excited state by a method which is described in detail in the special case of 
the tetrahedral symmetry group Td in Sections 6 and 7. 

If A denotes an irreducible representation of G and a a basis function of A, then the 
basis functions of the reducible representation M, which transform as Aa can be 
found from the matrix [ 3 ] 

where n is the (finite) order of the group, d, the dimension of the irreducible represen- 
tation A, d:,*(s) is the complex conjugate of the element aa of the matrix of the 
irreducible representation A of symmetry element s, and the sum is over all n elements 
s of the symmetry group G. It can be shown that the eigenvalues of Paa are zero or 
one and the symmetry adapted wave functions are the eigenfunctions belonging to the 
eigenvalues one. In order to avoid orthogonalisation procedures for every A, only 
functions transforming as Aa are obtained this way, the other basis functions of A can 
easily be found by multiplying with one of the representation matrices M, according 
to Table 1. 

The symmetry group G can be generated by products of a certain number of 
elements a, b, c ,... . The method to find all symmetry adapted oscillator functions is to 

TABLE 1 

Transformation Properties of Basis Functions of the Irreducible Representations of the Group T, 

a 

a, 
a, 

-f(u + Jsv, 
tcq-3u - v) 

Y 

; 

:. 
? 

C 

aI 

-6 

u 
-V 

4 
-a 

-Y 

Y 

i 
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construct successively the representation matrices M,, M, ,..., for the group generating 
elements a, 6, c ,..., for N + 1 from those of the Nth excited state and to calculate the 
eigenfunctions of the representation matrices M, , M,, M, ,..., by numerical methods. 

II. DETAILS OFTHE METHOD FORTHE TETRAHEDRAL SYMMETRY GROUP 

5. Tetrahedral Symmetry Group 

The symmetry group T, of the tetrahedron may be defined by three group 
generating elements 

a3 = b2 = c2 = 1, bab = a2ba2, bc = cb, ac = ca 2, (11) 

where a is a rotation about 2x13 along the (111) direction, b a rotation about 71 along 
the (001) or z direction, and c is a reflection at a plane perpendicular to the (-1, 1,O) 
direction. The definition of the transformation properties of the irreducible represen- 
tations with respect to a, b, and c is given in Table 1 and is consistent with the 
definition given by Koster et al. [4]. Since the creation operators transform as the 
corresponding normal coordinates, A ’ and B + of an E-mode transform as Eu and 
Ev, respectively. In case of a T,-mode A ‘, B ‘, and C ’ transform as T, &!, T, 9, and 
T,(I of Table 1, respectively. 

The oscillator functions fi for the excited state N = 1 transform as the 
corresponding normal coordinates. Table 1 also gives the representation matrices 
after Eq. (9) for N = 1 

E-mode: f, = I lo),, f2 = lol), @i. (6)) 

M,=+ M,,= M,.= (12) 

Matrices (12) and (13) are used as the starting point from which the representation 
matrices for N = 2, N = 3, and so on can be found by the method described in 
Sections 6 and 7. 

6. Construction of the Representation Matrices in Case of an E-Mode 

Assume the representation matrices M, of Eq. (9) for s = a, 6, and c are known for 
a fixed value of N. They are generated from the Li functions fi, i = 1, 2,..., Lk. defined 
in Eq. (6). We now consider the system N + 1 and the corresponding Lf;., , oscillator 
functions are denoted by di. Due to the special arrangement of these functions we 
have with respect to Eq. (3) 
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for i = 1, 2,..., LE: .h = lmini)M, 

#i = 1 mi + In,),+ 1 = (rnj + 1)-“%4+ jmini),V, 

for i=Li+,: #izIoN+ l),V+L= (N+ 1)-“2B+loN)lv. 

441 

(14) 

We therefore construct the Lf,+, -dimensional representation matrices k?, for the 
system N + 1 from four submatrices 

K= (“c: ;: ), (15) 

where A, is a L$dimensional square matrix (i,j = 1, 2,..., L;) 

A,: (4il ps#jj> = (mi + lnjl p.y lm,j + lni) 

= (mj + 1)-l” (mi + lni( P,~A ’ Imini). (16) 

In the special cases s = a, 6, c we have from Section 2 and Table 1 

P,A+ = 
i 

J3 -;A+--TBI P,, P,A+ =A+P/,, P,A+ =A+PP,.. (17) 

This enables us to calculate the matrices A, from M, of Eq. (9) 

A,: 
112 

(mi+ Inil 
i 
-;A’-$Bt P*I v?i> 

Cminil ‘0 Imjnj> 

(mj + l?Zi - l ( p, Imjn,j> 

112 

p4- ,,j’ 

where Eqs. (5) and (6) have been used. 

A . h’ 

A,: 

The submatrix B, of Eq. (15) is a LE by l-dimensional rectangular matrix 
i = 1, 2,..., Lg, j=LE.+, 

Bs: ($i,Ps#i)= (m, + lnil P, IoN + 1) (19) 

= (N + 1))“2 (mi + In,/ P,B+ ION). 
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Due to the transformation properties 

P,B+ =(f,/3A+ -SB+)P,, PbB+ =BiPh, P,B+ 

we find in the same way with K = LE 

B,: (#i, ‘b#ji> = 0, 

B,: (4il ‘c#jj> = 0. 

-B+P,, (20) 

(21) 

The submatrix C, of Eq. (15) is a 1 by L$dimensional rectangular matrix 
i=Li+,, j= 1, 2,..., Lg derived in the same way. The result is with K = Lc 

C,: (4iT pb4jj> = O, (22) 

C,: (Qi, pc4ji> = O. 

Finally, D, is given by (i = j = L$+, , K = L$) 

Da = ($i 3 Pa #j) = -+PcK > D, = (4; 3 P,#,i) = Pi, 3 

D, = (qi$, P,#j) = - Piti. 
(23) 

Thus the representation matrices a, of Eq. (15) for N + 1 are found with the help 
of the matrix elements Pfi of the representation matrices for N. 

I. Construction of the Representation Matrices in Case of a T,-Mode 

Assume the representation matrices M, of Eq. (9) for s = a, b, and c are known for 
a fixed value of N. They are generated from the Li functions fi, i = 1, 2,..., L,’ defined 
in Eqs. (7) and (8). We now consider the system N + 1 and the corresponding L,; , , 
oscillator functions denoted by di. Due to the special arrangement of these functions 
we have with respect to Eq. (4) 

for i = 1, 2 ,..., Lj: 

for i=Li+ l,...,Li+, 

for i= L;t+,: 

- 

fi = )limini), 

4i = /Ii + lmini>,V+ I 

= (Ii+ 1))‘12 A+ Ilimini),, 
(24) 

1: 4i = I Omi + Ini&+ I 

= (mi + 1))“2 B’lOOmin;)N, 

$i=lOON+ l)>v+l 

= (N+ 1)-“2 C+ IOON),. 
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Therefore the representation matrices ii?, for N + 1 are constructed with the help of 
nine submatrices which are defined by dividing the oscillator functions 4i in three 
classes according to Eq. (24) 

(25) 

The submatrices can be found from the transformation properties of the creation 
operators taken from Table 1 

P,A+ = C+P,, PbA+ = -A+Ph, P,,A ’ = B +Pc, 

P,B+ =A+Po, PbB+ = -B+Ph, P,B+ =A+PP,., (26) 

P,Cf = B+P,, Pbc+ = c+Pb, p,c+ = c+p,.. 

The nine submatrices of Eq. (25) are calculated by the same procedure described in 
Section 6. Using Eqs. (24) and (26) finally gives 

A,: 

A,: 

A,: 

B ’ 0. 

B,: 

D,: 

D,: 

E,: 

F,: 

G,: 

I,: 

I,: 

(q&, p,$$j) = n, ‘I2 i 1 Lji- l 
(li + lrnjni- l j Pa I!jVZjtZj), 

(#i1 Ph#f) = - $$ I’* (Lfm[flil P, Iljmjt?j), 
i 1 I 

(&, Pc#,J = -!Yf- IV2 
( 1 lj+ l 

(li + lm, - ln;l P, pjmjrq, 

(pi, p,~j) = li I” (liminil P, /Om,jnj), 
i i mj+ 1 (27) 

(#i, p,#j) = JiL!- “* (l,m,n,l P, IOm,in,i), 
i 1 mj+ 1 

($irPo~j) = L ‘I2 
i ) lj+ l 

(Omi + lni - 11 P, 1 ljmjni), 

(#i? p,#j) = s IV2 (OmiHil P, Iljmjnj), 
i 1 .I 

(qbi, Pb+hi) = - 
c 1 
s I” (Om,n,J P, 10minj), 

J 

(pi, p,~j) = $$ “* (Om,n,J P, jOON>, 
i 1 

(#i, p,4j) = s I” (OONl P, IljmjHj), 
( i 

($i? p*4jj>= CoiNI p, looN), 

(!4 2 PC 4.j) = VW p, I ow. 
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All other submatrices are zero. The corresponding matrix elements of the represen- 
tation matrices Eq. (9) can easily be found by using Eq. (8). 

8. Results 

A computer program has been written and tested which gives the symmetry 
adapted oscillator functions for arbitrary excited states N for a two- or three- 
dimensional oscillator in case of tetrahedral symmetry. As an example Table 2 gives 
the results for a T, oscillator up to N = 6. In case of an E-oscillator symmetry 
adapted wave functions up to N = 6 can be found in [ 11. 

TABLE 2 

Symmetry Adapted Wave Functions of a Three-Dimensional Harmonic Oscillator of Symmetry T? 

N A, A, Eu EL 

- 

0 IOOO) : 1 

2 1200) : l/J3 
1020) : l/L/3 
1002) : l/J3 

3 1111): I 

4 1400) : l/\/3 
1040) : l/\/3 
1004) : l/\/3 

1220) : l/J3 
1202) : l/d/3 
1022) : l/J3 

S 1311): l/d/3 
(131): l/J3 
1113): l/J3 

6 1420) : l/J6 
1402) : l/d/6 
1240) : l/J6 
1204) : l/J6 
1042) : l/\/6 
1024) : l/J6 

1600) : l/J3 
1060) : l/J3 
/ 006) : l/\/3 

1222) : I 

1420) : l/\/6 
1402) :-l/\/6 
1240) : -l/J6 
1204) : l/J6 
j 042) : l/\/6 
1024) : -l/J6 

1200) : -1/d/6 
1020) :-l/\/6 
1002) : 2/\/6 

1400) : -l/J6 
1040) :--1/d/6 
1004) : 2/\/6 

1220) : 2/\/6 
( 202) : - l/d6 
1022) : -l/\/6 

(311): -l/J6 
/ 131) : -l/\/6 
1113): 2/d/6 

1420) : l/J12 
1402) : l/\/l2 
1240): l/J12 
/ 204) : -1/d/3 
1042) : l/d/12 
1024) : -l/J3 

1420) -l/2 
1402) l/2 
1240) -l/2 
1042) l/2 

1600) : -l/\/6 
1060) : -l/d6 
1006) : 2/\/6 

1200) : l/J2 
1020) :-l/\/2 

1400) : I/\/2 
1040): -l/\/Z 

(202): pl/\iZ 
1022) : l/\/2 

i311): l/\/2 
/131):-l/x/2 

1420) : -l/2 
1402) :-l/2 
1240) : l/2 
1042): 112 

1420): -l/\//l2 
1402) : l/\/12 
1240) : l/J12 
1204) : l/\//3 
i042) : -l/\/l2 
1024) : -l/J3 

1600) : l/d/z 
1060) : ~ I/J2 

Table continued 
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TABLE 2 (continued) 

N T, a TIP T, ;’ 

5 1320) 
1302) 

1140) 
1104) 

6 1231) 
1213) 

1051) 
1015) 

1210) : -l/d2 
1012) : l/J2 

1301) : l/d/Z 
1103) : -l/J2 

(230) : l/d/2 
1032) :-l/\/2 

1410) : -l/\/2 
1041) : l/d/2 

1321) : -t/\/2 
1123) : l/\/2 

1501) : -l/\/2 
1105) : l/\/2 

1210) 
1021) 

1301) 
1130) 

1203) 
1023) 

1401) 
1041) 

1312) 
I 132) 

1510) 
1150) 

IIJ2 
-m 
--1/J2 

w 
-1IJ2 

lid2 
w2 

-l/J2 

l/\/2 
-l/d2 

uJ2 
-1lJ2 

N T2l 

I 1100): I 

2 1011): 1 

3 1300): 1 

1120) : l/J2 
(102): l/J2 

4 1211) 
1031) 
1013) 

1 

l/d2 
vJ2 

5 1500) 1 

1140) l/J2 
1104) vJ2 
1320) w 
1302) vJ2 
1122) 1 

6 1231) :-l/\/2 
1213) :-l/\/2 

1051) : -l/J2 
1015) : -l/J2 

1411): I 

1033): 1 

1010): I 

1101): I 

1030): 1 

1210) : l/d/2 
(012) : l/\/2 

1121): 1 

1301) : l/\/2 
/ 103) : I/\/2 

1050) : 1 

1410) : l/d/2 
1014) : l/\/2 

1230) : t/\/2 
1032) : l/J2 

1212): 1 

1321) : -l/J2 
1123) : -l/J2 

ISOl) :-l/\/2 
1105) : -l/J2 

1141): 1 

1303): I 

T,i 

1001): 1 

1110): I 

1003) 

1201) 
1021) 

1112) 
1310) 
1130) 

1005) 

1401) 
1041) 

1203) 
1023) 

1221) 

1312) 
i 132) 

1510) 
1150) 
1114) 

1330) 

1 

uJ2 
vv4 
1 

vd2 
w2 
1 

l/\/2 
w 
w 
uJ2 

-1/v+ 
--1/v+ 
--1/v+ 
-m 

1 

1 

mn ts Notei,6,,J a function with I phonons of type c, m phonons of type 7, and n phonons of type <. 
(For , (2/J6) 1220) ~ (11\/6) 1202) - (l/\/6) 1022) and -(l/\/2) 1202) + (l/J2) 1022) 
transform as u and u of the irreducible representation E.) 
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For the 7’,(E) oscillator a calculation up to N = 10 (14) has been performed. To 
find the 286 (120) symmetry adapted functions the CYBER 170 calculator used 309 
(9) set execution time and the memory used was about 80 K (38 K). 
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